A Geometric Mean of Parameterized Arithmetic and Harmonic Means of Convex Functions

نویسندگان

  • Sangho Kum
  • Yongdo Lim
چکیده

and Applied Analysis 3 called cofinite if the recession function f0 of f satisfies f0 y ∞, for all y / 0 see 15, page 116 . Then f is cofinite if and only if dom f∗ R by means of 15, Corollary 13.3.1 . The terminology “cofinite” is renewed as “coercive” in 16, 3.26 Theorem . Now we take a look at Atteia and Raı̈ssouli 11, Proposition 4.4 with a refined proof. Proposition 2.1 See Atteia and Raı̈ssouli 11, Proposition 4.4 . Let dom f ∩ dom g / ∅. If either f or g is cofinite, then all βn f, g and β∗ n f, g belong to Γ and βn f, g is cofinite for all n ≥ 0. Hence the geometric mean f # g due to Atteia and Raı̈ssouli [11], that is, the limit f # g lim n→∞ βn ( f, g ) , 2.3 is well defined and proper convex on dom β0 f, g . In particular, it belongs to Γ under the assumption that either dom β0 f, g dom β∗ 0 f, g or dom β0 f, g is closed. Moreover, f # g f ∗ # g∗ ∗ under the condition dom β0 f, g dom β∗ 0 f, g . Proof. Without loss of generality, we may assume that g is cofinite. Clearly, β0 f, g 1/2 f g ∈ Γ since dom β0 f, g dom f ∩ dom g / ∅. In addition, β0 f, g is still cofinite by 15, Theorem 9.3 . Then β∗ 0 f, g 1/2 f ∗ g∗ ∗ 1/2 f g ∈ Γ by virtue of 15, Corollary 9.2.2 . Thus dom β∗ 0 f, g 1/2 dom f dom g ⊇ dom β0 f, g . By induction, assume that βn ( f, g ) , β∗ n ( f, g ) ∈ Γ, βn(f, g) is cofinite, dom βn(f, g) ⊆ dom β∗ n(f, g). 2.4 Then dom βn 1 f, g dom βn f, g ∩ dom β∗ n f, g dom βn f, g , so βn 1 f, g ∈ Γ. Moreover, βn 1 f, g is cofinite because βn f, g is cofinite. It is readily checked that β∗ n 1 ( f, g ) ( βn 1 ( f∗, g∗ ))∗ (1 2 ( βn ( f, g ))∗ 1 2 ( β∗ n ( f, g ))∗)∗ . 2.5 Hence β∗ n 1 f, g 1/2 βn f, g β∗ n f, g ∈ Γ. In this case, dom β∗ n 1 f, g 1/2 dom βn f, g dom β∗ n f, g ⊇ dom βn f, g dom βn 1 f, g . Thus we obtain that ∀n, dom βn ( f, g ) dom f ∩ dom g dom β0 ( f, g ) , ∀n, dom β∗ n ( f, g ) ⊇ dom βn(f, g) dom β0(f, g). 2.6 According to Atteia and Raı̈ssouli 11, Proposition 4.4 , we have βn 1 ( f, g ) − β∗ n 1(f, g) ≤ 1 2 ( βn ( f, g ) − β∗ n(f, g)), ∀n ≥ 0; β∗ 0 ( f, g ) ≤ · ≤ β∗ n(f, g) ≤ β∗ n 1(f, g) ≤ · ≤ βn 1(f, g) ≤ βn(f, g) ≤ · ≤ β0(f, g). 2.7 Hence the geometric mean f # g is well defined and belongs to Γ under the given hypothesis. If dom β0 f, g is closed, we define an increasing sequence γn f, g ∈ Γ by γn ( f, g ) β∗ n ( f, g ) δC, 2.8 4 Abstract and Applied Analysis where δC denotes the indicator function of the closed convex set C dom β0 f, g . Obviously, f # g is the common limit of βn f, g and γn f, g , hence, belongs to Γ. For the equality f # g f∗ # g∗ ∗, we have ( f∗ # g∗ )∗ x sup y∈Rn [〈 y, x 〉 − (f∗ # g∗)(y)] sup y∈Rn [〈 y, x 〉 − lim n→∞ βn ( f∗, g∗ )( y )] sup y∈Rn [〈 y, x 〉 − lim n→∞ β∗ n ( f∗, g∗ )( y )] sup y∈Rn [〈 y, x 〉 − lim n→∞ ( βn ( f, g ))∗( y )] ≤ sup y∈Rn [〈 y, x 〉 − (βn(f, g))∗(y)], ∀n ( βn ( f, g ))∗∗ x βn(f, g) x , ∀n. 2.9 Hence ( f∗ # g∗ )∗ x ≤ lim n→∞ βn ( f, g ) x ( f # g ) x . 2.10 On the other hand, ( f∗ # g∗ )∗ x sup y∈Rn [〈 y, x 〉 − (f∗ # g∗)(y)] sup y∈Rn [〈 y, x 〉 − lim n→∞ βn ( f∗, g∗ )( y )] ≥ sup y∈Rn [〈 y, x 〉 − βn(f∗, g∗)(y)], ∀n ( βn ( f∗, g∗ ))∗ x β∗ n(f, g) x , ∀n. 2.11 Thus ( f∗ # g∗ )∗ x ≥ lim n→∞ β∗ n ( f, g ) x ( f # g ) x . 2.12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

Upper Bounds on the Probability of Error in terms of Mean Divergence Measures

In this paper we shall consider some famous means such as arithmetic, harmonic, geometric, root square mean, etc. Considering the difference of these means, we can establish [5, 6]. some inequalities among them. Interestingly, the difference of mean considered is convex functions. Applying some properties, upper bounds on the probability of error are established in this paper. It is also shown ...

متن کامل

POPOVICIU’S TYPE INEQUALITIES FOR h-MN-CONVEX FUNCTIONS

In this work, several inequalities of Popoviciu type for h-MN-convex functions are proved, where M and N are denote to Arithmetic, Geometric and Harmonic means and h is a non-negative superadditive or subadditive function.

متن کامل

m at h . C A ] 9 J an 2 00 7 GENERALIZED CONVEXITY AND INEQUALITIES

Let R+ = (0,∞) and let M be the family of all mean values of two numbers in R+ (some examples are the arithmetic, geometric, and harmonic means). Given m1, m2 ∈ M, we say that a function f : R+ → R+ is (m1, m2)-convex if f(m1(x, y)) ≤ m2(f(x), f(y)) for all x, y ∈ R+. The usual convexity is the special case when both mean values are arithmetic means. We study the dependence of (m1, m2)-convexit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014